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made for the case of non-uniform spacing. Another generalization, in which the 
approximating function takes the form 

N 
f(k) = a,?-, + a2r2 + + aN?,N = E Iik 

i=1 

where the ri are completely arbitrary real numbers, can also be made. The ai can 
be determined by a modification of the method described in this paper, however 
the procedure is extremely cumbersome and very decidedly offers no advantage 
over the obvious Cramer's Rule solution. 
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A New Algorithm for Diagonalizing a Real 
Symmetric Matrix 

By C. Donald La Budde 

Abstract. The algorithm described in this paper is essentially a Jacobi-like proce- 
dure employing Householder and Jacobi orthogonal similarity transformations 
successively on a real symmetric matrix to obtain, in the limit, a diagonal matrix of 
eigenvalues. The columns of the product matrix of all the orthogonal transforma- 
tions, taken in the proper order, form a complete orthonormal set of eigenvectors. 

1. Introduction. In this paper we describe a Jacobi-like procedure for di- 
agonalizing a real symmetric matrix by means of orthogonal similarity transforma- 
tions. The earliest such procedure was proposed by Jacobi in 1847 which involved 
the use of plane rotations, but required a computer search for the largest off-diagonal 
element, in absolute value. Later, procedures were proposed in which the off- 
diagonal elements were annihilated in sequence. The latter method, known as the 
cyclic Jacobi method, was discussed by Forsythe and Henrici (1). They showed 
that convergence of this method would only take place if the angle of rotation lay 
in a closed interval properly contained in the open interval ((-)ir, ( + )i). The 
method described here employs successive Householder and Jacobi orthogonal 
similarity transformations in a sequential fashion to obtain, as in Jacobi methods, 
in the limit, a diagonal matrix of eigenvalues. The columns of the product matrix 
of all the Householder and Jacobi transformations employed form a complete set of 
orthonormal eigenvectors. Throughout this paper we will confine ourselves to the 
consideration of real symmetric matrices. 

2. General Description of the Algorithm; Definitions and Notations. The 
general procedure may be described as follows: beginning with an arbitrary sym- 
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metric matrix A = (ajk) of order n, we perform successive Householder and Jacobi 
orthogonal similarity transformations on A so that in the limit we obtain a matrix, 
orthogonally similar to A, of the form (as a partitioned matrix) 

(2.1) (0lAl 

where A1 is a symmetric matrix of order n - 1 and el is an eigenvalue of A. Then 
A is reduced, and the same procedure is applied to A1, etc. until a diagonal matrix of 
eigenvalues and a complete orthonormal set of eigenvectors is obtained. We need 
only describe the reduction of A to a matrix of the kind (2.1) since all other parts 
of the reduction will be identical. 

We now describe a general ith step in the iteration designed to reduce the 
matrix A to one of type (2.1). One step consists of two orthogonal similarity 
transformations: first, a Householder transformation which annihilates n - 2 
off-diagonal elements in the first row of A; and second, a Jacobi plane rotation which 
annihilates the remaining off-diagonal element in the first row of A. At the beginning 
of a typical step the first row of A appears thus: 

(2.2) (x,O,x, x, * , x, x). 

After the Householder and before the Jacobi plane rotation the first row appears 
thus: 

(2.3) (x, x, 0, 0, . , 0, 0). 

Then after the Jacobi plane rotation the first row again has the appearance of (2.2). 
We now take the following definitions and notation: let M be any real matrix or 

vector. Then we define 

(2.4) 11 M 112 = sum of the squares of all of the elements of M. 

Let A(i-') = (a'k-l)) denote the matrix A and its elements before the ith step of the 
iteration. We may write A") in partitioned form: 

(2.5) A(i) = ( af S 
YSMI AP)} 

where A(t) is a symmetric matrix of order n - 1 and S(') is a column vector of 
order n- 1. Let B(t) - (b(t)) be the matrix A and its elements during the ith 

step, after the Householder transformation and before the Jacobi plane rotation. 
B(i) may also be written in partitioned form: 

(2.6) B 

where B(f) is a symmetric matrix of order n - 1 and V(i) is a column vector of 
order n - 1. Also, we let In be the identity matrix of order n. 

The Householder transformation H(") used during the ith step may be written as 
follows: 

(2.7) H(i) = ( 0 
(2.7) ~~H(t = 0 2WMWM(2t/ In-il-- 

-- - - - 
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where WV(i)t is a row vector of order n - 1 with elements (w5i)) j = 2, ... n, 
and 

(2.8) W tW = 1. 

The Jacobi plane rotation j(i) may be written as follows: 
(i) - (i) I 

(ti (i) I 0 
(2.9) j c 0 In-2/ 

where c , 8 are real numbers satisfying: 

(2.10) c(i)2 + s(i)2= 1. 

Finally we let t = /S 

3. Proof of Convergence of the Algorithm. We first collect the following obvi- 
ous results: 

1Pi)A ('-1)H(') = B('); J(') tB(')J(') = A"(); 

V() = (I - 2W(i)W(i)t)s(i1-); 

(3.1) B(t) (In-1 - 2W(T)TW()t)A(i-l)(In_l- 2W(i)JW(i)t) 

i-',)11= IIB(i) 
= 

A(i)j; = jjA LJ; 

II S(i-1 = II TI I; i I B"i = 11 A('-l) 11; a l7b' l 

If we define W() (and hence H(t)) as follows: 

(3.2) w - 1/V2 

(3.3) w5i) = aj'1/V2jj - II j = 3, *..,n 

then it is easily seen (3) that 

(3.4) i b = 1 AS2 

(3.5) b(,' = Oj 3, ..., n, 

and condition (2.8) holds. (At the beginning of a typical jth step afT'l = 0.) If 
we define t W (and hence c(, sW up through relative signs) as follows: 

(3.6) t i) = [af1'i - )-b + >v'(ail)-bb(i))2 +i 4b)2]/2b(') 

from which follows: 

) 
i 2 

( 1 al1) _b2) (a(-1)() )2 + 
i)2 

(-1]2- (3.7) = ( a)11 -- b(aii)[(all - b22)2 + 1 

then it readily follows (2) that 

(3.8) a( = 0. 

Now we may state the principal theorem of this paper. 
THEOREM: Let H() be defined by (3.2) and (3.3) and jCs) be defined by (3.6). 

Then 

(3.9) Lim a(W = el 
i-too 
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an eigenvalue of A and 

(3.10) Lim 1l Si) = 0. 

Hence the limiting form of A will be of the type (2.1). 
Proof: With t) defined by (3.6) the equation for a1(l is: 

(3.11) a(i = all'1 + (a)[b (' - 'a-) + [(a('-') b ")2 + 4b (2]"]. 

This shows that a"l) > al"'1); we have strict inequality if b(2) - 0. This shows that 
the a") form a monotonically increasing sequence of numbers bounded from above 
by 11 A 11. This implies (3.9) which, together with (3.4) and (3.11), implies (3.10). 

We note that condition (3.8) holds if the minus sign is chosen in front of the 
radical in the definition of t(i) (3.6). We may then state a corollary to the theorem. 

COROLLARY: If the minus sign in front of the radical in the definition of t(i) (3.6) 
is always chosen, then the conclusions of the theorem, (3.9) and (3.10), still follow. 

Proof: The formula for a(ll (3.11) in this case will have a minus sign in front of 
the radical. This shows that the a") form a monotonically decreasing sequence of 
numbers bounded from below by-II A 11. Hence the conclusions of the theorem 
readily follow. 

It appears, at present, difficult to estimate the convergence rate of this algorithm. 
Some knowledge of the convergence rate may be obtained as follows. If we let 

(3.12) u(i) = S(I)/sl s(iI 

then it can easily be shown that: 

(3.13) 11 As'i' 112 =s(i)2[U(i-1) tA (i-1)2U(i-1) _ (U0l) tA,( -)i 
0-) ]i 

The quantity inside the brackets may be estimated as follows: 

i(4 2 > J(il)tA1(i-l)2UJ(il) U (U l)tA1tl)L(i-1))2 

(3.14) =U(' l'tAl('-1)(In_-l U('-l' U('-l)t)A ('-1)U('-1) = 

where e is the eigenvalue of A1i(i1) with largest absolute value. The inequalities 
follow from the fact thatIn-l _ U(i l)U('l)t iS a projection onto the subspace of 
all n - lst order vectors orthogonal to Ui1), along U(i 1). The first inequality of 
(3.14) will be an equality if A1('-1) has two eigenvalues e and -e of maximum 
absolute value with corresponding normalized eigenvectors X1 and X2 and 

(3.15) 0-1) = (1/V-\2)X1 + (1/V/2)X2 . 

The last inequality of (3.14) will be an equality if and only if U(1) is an eigenvector 
of A,(''). If this is the case, then we have 

n n 
(3.16) E a5'_ ) a('-) = a('_) a('-') = ea('-') j-2, * , n, 

k=2 k=3 

where e is an eigenvalue of A1 (i1) corresponding to the eigenvector Ui1). We note 
that a(271 = 0. In particular 

n 
(i-i) U1 

( 3.17 ) / a i-E2k alk = 0. 
k=3 
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But 

(3.18) a = ") b; a = C()b(j = 3, 

so (3.17) becomes 

(3.19) s E _ o 
j=3 

which implies 
n 

(3.20) b2 = 
j==3 

if s-1), cU-1) are both not zero. So if (3.14) approaches zero as i approaches in- 
finity, the algorithm causes the off-diagonal elements in both the first and second 
columns to approach zero. Thus, in this case the matrix A will be reduced to a direct 
sum of a second order diagonal matrix and a matrix of order n - 2. In general, it 
should be noted that although 11 s'i' 11 approaches zero as i approaches infinity, 
the 1 si' 11 do not necessarily form a monotonically decreasing sequence. 

Finally, we may make some remarks about the order in which the eigenvalues 
are computed. The algorithm appears, in most cases, to compute the eigenvalues 
in the order of algebraic magnitude, the algebraically largest being computed first, 
the next largest being computed second, etc., if t) is defined by (3.6). There cer- 
tainly is no theorem to this effect, however; the most that can be said is the follow- 
ing. Let el, e2, * * *, en be the eigenvalues of A in the order in which they are com- 
puted, ej 6 ek for j - k, and b) -z4 0 for all i. Then the eigenvalue set e; 
1 ? j < n - 1 will not contain the smallest eigenvalue. The reason for this is the 
following. From (3.4), (3.6), (3.10) we can conclude 

(3.21) Lims(i) = 0. 

From (3.7) and (3.21) we must have for sufficiently large i, and b(2) 0 0 

(3.22) b() < a('-') < a() <el. 

The formula for b(2) is: 

(3.23) b)= U(i=)tA(il) 

Because the eigenvalues of A are distinct, the eigenvalues of AlU-') are also distinct 
and properly separate the eigenvalues of A. From this and (3.23) we can conlclude: 

(smallest eigenvalue of A) < (smallest eigenvalue of AlU-1)) 

(3.24) ? b2) < (largest eigenvalue of A1l(-')) 

< (largest eigenvalue of A). 

The first inequality of (3.24) and (3.22) show that el cannot be the smallest eigen- 
value of A. A similar argument can be applied to e2, e3, etc. The reduction of the 
n - 1t column and row places the larger of the two remaining eigenvalues in the 
n - 1st row and column if t() is defined by (3.6). 
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4. Conclusions. This method appears to be attractive for use in the problem of 
calculating all eigenvalues and a complete set of orthonormalized eigenvectors for 
the following reasons: 

(a) Like the cyclic threshold Jacobi method, there is no search for largest pivotal 
elements. 

(b) Unlike the cyclic threshold Jacobi method there is no limitation on the angle 
of rotation in the Jacobi rotation as Forsythe and Henrici (1) showed was necessary 
for convergence. 

(c) Each iteration creates n - 1 zeros at the cost of 3 square roots as compared 
to one zero in the Jacobi method at the cost of 2 square roots. 
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The Calculation of Certain Bessel Functions 

By D. B. Hunter 

1. Introduction. The problem of calculating Bessel functions in a digital computer 
has engaged the attention of a number of authors in recent years, and a variety of 
methods is now available. Apart from the obvious use of the power-series for small 
argumenits and the asymptotic expansions for large arguments, the methods which 
have been proposed include those based on the recurrence-relations (Stegun and 
Abramowitz [6]; Goldstein and Thaler [3]), phase amplitude methods (Goldstein 
and Thaler [2]), and methods based on quadrature formulas (Fettis [1], Luke [5]). 

Particular difficulties arise in the case of the modified Bessel functions of the 
second kind, Kn(z) with z positive; for unless z is small, the power-series for Kn(z) 
resolves into a difference of two large numbers which are almost equal, with a con- 
sequelnt loss of significant digits. The asymptotic expansion and the phase-amplitude 
method, on the other hand, do not yield reasonable accuracy until I z I is fairly 
large. Thus for medium-sized values some other approach must be used. For such 
values the quadrature methods are convenient. 

2. Quadrature Methods. The methods of Fettis [1] and Luke [5] are based on 
the application of numerical integration to the expression 

(1) JCK (z) = e-zcoshO cosh vO dO. 
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